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ABSTRACT 

A flow on a homogeneous space need not come from the action of a one- 
parameter subgroup of the ambient transitive group. We exhibit an inductive 
method for determining when this is the case. 

1. Introduction 

Let M be a connected, compact C OO manifold. By a flow on M we shall mean a 

Coo action of the real numbers on M. Suppose that x is a flow on M, the effect of  

t e R on m ~ M being denoted xt(m). Suppose further that G is a connected Lie 

group. We shall say that the flow x is G-induced if we can find a C% transitive 

action (g, m ) ~ g m  of G on M with the property that for some one-parameter 

subgroup ~b: R ~ G of G, we have xt(m) = t~(t)m for all t ~ R and m ~ M. 

Because G-induced flows are particularly easy to study, it is reasonable to seek 

a criterion for determining when a given flow is G-induced for some appropriate G. 

One inductive approach to finding such a criterion runs along the following lines: 

Suppose that, in addition to M, we are given a second connected, compact  Coo 

manifold N. Let us also suppose that there is a connected Lie group H that 

operates smoothly on N so that quotient N / H  is M. A flow on N that permutes 

the orbits of  H will then project to a flow on M. One is thus led to pose the in- 

ductive problem: Let x be a flow on N such that x permutes the orbits of  H,  and 

such that the flow on M obtained by projecting x is G-induced. Under what con- 

ditions can one then conclude that there is an extension 1 --, H - ,  L --, G --, 1 of  

G by H such that x is L-induced? 
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In the generality this problem has just been posed, it is hopelessly difficult. If, 

however, one restricts one's attention to the case in which G and H are abelian, 

then one can get remarkably complete results, as we shall show. Our condition 

involves the solvability of  a certain differential equation associated with the 

projected flow on M. When the equation is solvable, L can be found. In Section 3, 

we show that when the equation is not solvable, L need not exist. We leave the 

precise formulation of the results to the next section. 

2. The main result 

Let us begin by establishing some notation. As above, N will denote a connected 

compact Coo manifold. We shall assume given an action of R" on N, and to keep 

the notation as in the Introduction, we shall use H to denote R'  in this connection. 

In order to get positive results, one must impose rather stringent conditions on the 

action of H on N:  

We assume that there is a tower {0} = H o ___H 1 _ . . -H,  = I'-I of  connected 

subgroups of  I-I with the fo l lowing properties: 

(1) The dimension of each I'l k is k, so that I-Ik/Hk_ 1 = R. (2) The action of H 

on N induces an action of H k/H k_ 1 on N / H  k_ 1. We assume that the subgroup of 

I ' ik/l ' lk-1 leaving a point in N/I-I k_ ~ fixed is isomorphic to the integers 7. and does 

not depend on the point. (3) Set Mk = N /I-Ik. Using standard arguments from [-4], 

one can see that the condition (2) on the action of H implies the existence of a Coo 

manifold structure on Mk such that the natural map Pk: N ~ Mk is Coo. In partic- 

ular, Mr = N / M r  = N/I-I  is a C OO manifold. Our final assumption is that Mr is 

diffeomorphic to the n-dimensional torus T n. 

In keeping, again, with the notation of the Introduction, we shall usually write 

M in place of M r. Thus, M = N/I-I .  

Let x: R x N ~ N be a flow. By the derivative of x, we shall mean, as is usual, 

the vector field 0x on N whose effect on f ~ C ~ ( N )  is given by: 

axf(n)  = l imt~o[f (x , (n))  - J'(n)]/t. 

Since H acts on N, each one-parameter subgroup ~b: R ~ H of H defines a flow 

on N, namely : (t, n) ~ ~(t)n. We shall indulge in a slight abuse of notation and 

use d~ to denote the derivative of this flow. We shall use H to denote the real 

vector space spanned by the vector fields O~, where ~b varies over all one-parameter 

subgroups of  H. Similarly, Hk will denote the real vector space spanned by the 

O§ with ~b a one-parameter subgroup of H k. 
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We shall use T(N) to denote the real vector space of global Coo vector fields on 

N. (Similar notation will be used for other manifolds as well.) Given X and Y 

from T(N), we denote by [X, Y] their Lie bracket. We shall use Hk ~ to denote 

{X e T(N): [X, Hm] - Hm- 1 for m = 1, 2,. . .  k}. I f f e  C| and X e Hk ~, then 

the function X( fo  Pk) on N is constant on orbits of  H k and hence defines a function 

(p~X)f in C~176 We thus get a linear map p~:H~ ~ T(M,). 

LEMMA 2.1. Let {X1,.. . ,X,} be a basis for H over R such that for each k, 

{X~, ..., X,} is a basis for H,. The only elements of H~ annihilated by p, are, 

then, those of the form ~1X1 + ... + OCkX,, where each ~i is a C oo function on N 

constant on orbits of II k . 

Furthermore, p* maps H~ onto T(Mk). 

PROOF. Our conditions on the action of I l  guarantee that at each point m e N 

the vectors Xl(m), ..., Xr(m ) are linearly independent over R. From this, it follows 

by an easy induction that the kernel of p* is as asserted. What requires some 

effort is proving that p* is surjective. 

Let qk: M, - I  ~ Mk denote the natural map. Conditions (1) and (2) on the 

action of Il  imply that the action of I I , / I I , - i  on MR_ 1 induces an action of T 

(the circle group) on M k_ 1 such that for each m ~ Mk, the group T acts simply 

transitively on q [  l(m). It follows that each point in M, lies in an open set U such 

that q[l(U) is diffeomorphic with U x T via a diffeomorphism that intertwines 

the given action o f t  on q[  I(U) with the natural action T on U x T ("Ehresmann's  

lemma",  see [2: 31].) Now, using a partition of unity argument, one can easily 

show that for each X e T ( M , )  there exists some YeT(Mk_I)  such that 

[Y, p*_ 1X,] = 0 and such that Y projects via qk onto X. The proof  of the lemma 

is completed by induction on k. Q.E.D. 

Our main result is the following theorem. 

THEOREM. 2.2. Let x be a flow on N whose derivative lies in H~ =H ~, and 

let y be the flow on M obtained by projecting x. I f  

(i) the flow y has at least one dense orbit in M, 

(ii) the flow y on M is Rn-induced, and 

(iii) for each g ~ Coo(M) there exists a constant b and a function f e C~176 

such that g = 3yf + b, then there is an extension 1 ~l - I  ~ L ~  Rn--+ 1, with L 

nilpotent, such that the flow x on N is L-induced. 
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PROOF. Each one-parameter subgroup ~b: R ~ R" yields a flow (t, m) ~, ~,(t). m 

on M, the derivative of which will be denoted 8~. The real vector space spanned 

by the various vector fields ~ will be denoted G. Set B 1 = Oy, which is in G by 

assumption, and choose B2,'" ", Bn from G so that {B1,..., B,} is a basis for G over 

R. Also, set Y1 = a~. Our objective is to find elements Y2, '",  Y, in H ~ such that 

for each j < n, we have p*Yj = B j, and further, such that the real vector space L 

spanned by Y:,..., Yn and H is a Lie subalgebra of T(N). Once we have L, it will 

follow from our construction and the definition of H ~' that L is nilpotent, and it 

will follow from a result of Palais [4: 73] that the unique connected, simply 

connected Lie group L whose Lie algebra is L acts as desired on N. 

From Lemma 2.1 we know at least that there are elements Z2, . . . ,Z  ~ in 

H # satisfying p*Zj = Bj. Our problem is to "per tu rb"  the Zj 's so that we get 

vector fields that bracket with one another (and with I11) properly. 

The Jacobi identity yields that each [Y1,Zj] is in H r Hence we may form 

p*[Y1,Zj]. But p*[Y1,Zj] = [p*YI,p*Zj] = [BI,Bj]  = 0, and therefore we may 

' X apply Lemma 2.1 to conclude that for each j, the bracket [Yx, Zj] is )-~k = lgjk k, 

where {X1, . . . ,X,} is the basis for H described in Lemma 2.1, and each gig is a 

C ~~ function on N constant on orbits of hi. 

We now use condition (iii) on B 1 = ~y. That condition implies that for each pair 

( j ,k)  with 2 < j  < n and 1 < k < r, there exist constants bjk and functions 

fjk ~ C~ such that, when gjk is viewed as a function on M, we have 

Blfj ,  = b j~-  g j, and 

(2.2.1) Blfjk = bjk -- ~jk -- ~ Ckmfjm 
m = k + l  

for 1 < k < r - 1 ,  where C2m, Cam,'"C~m are constants defined by [Yi,Xm] 

= "-'k~"-- 1 C =  ~ km~Vk" Note that in finding bjk andfjk, we must proceed inductively from 

k = r  to k = r - 1 ,  etc. 

Set f ~  =f jk  o p, and set Yj = Z j +  Y_,'k=lff~X k. It then follows from (2.2.1) 
that for 2 < j < n ,  

(2.2.2) [Y1, Yj] -~ ~ bjkXk" 
k = l  

Of course, since each bjk is in R, we have [ Y1, Yj] E H. Also, since * Xfjk = 0 for all 

X ~ H, and since [H, HI -- 0, we have that for 2 < j < n, 

(2.2.3) [Yj, X] = [Zj, X] ~ H 
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for all X~H.  That [Y1,H] ~-H is part of  the hypothesis of the theorem, since 

Y1 =~x. 

Let L denote the real vector space spanned by I11, ..., Yn and H. We want to 

show that L is a Lie subalgebra of T(N), that is, we want I-L, L] c L. In view of 

(2.2.2) and (2.2.3), it remains to prove that IY~, Yj] e L  when 2 < i, j < n. We will 

actually show that [-Y, Yj-] ~ H. (We need this to guarantee that L is nilpotent.) 

It follows from (2.2.3) and from Zj ~ H that Yj ~ H. Hence [Y, Yj-] ~ H, and we 

may form p . rY,  Yi], which is readily seen to be 0. Using Lemma 2.1, we see that 

there are functions hkeC~(N) constant on orbits of I-4 such that rY, Yj] 

.-~ ~ J k = l h k X k  . Thus, 

(2.2.4) [Y1, [Y, Yj]] = ~ {(Y~hk)Xk + hR[Y~,Xk]}. 
k=l 

On the other hand, Jacobi's identity together with (2.2.2) and (2.2.3) yield that 

[Y1, [Y~, Yj]] e H, which means that there are constants dl, ..., d r such that 

(2.2.5) [Y~, [Y/, Yj]] = ~ d k X  k. 
k=l 

At this point we finally need condition (i), that y has a dense orbit in M. This 

condition implies that i f f e  C~(M) and if arf  = 0, then f is constant. Since M is 

compact, we can strengthen condition (i) to say that if f ~  C~(M) and if a r f  is 

constant, then f is constant. In the presence of this condition on at, the right-hand 

sides of  (2.2.4) and (2.2.5) can be equal only if each hk is constant, whence 

E~, ~] ---- Y-"k=,hRXR~H" 
Hence [L, L] _~ H _c L. Q.E.D. 

The power of Theorem 2.1 lies in the ready verifiability of condition (iii). We 

shall have more to say about that momentarily. Notice that condition (ii) is not 

something we are required to verify: it is the "induction hypothesis" on which 

we are trying to build. As for condition (i), it is easily seen to be a consequence of  

(ii) and (iii)--our discussion of condition (iii) will show this clearly. 

Recall that M can be realized as the n-dimensional torus T n = R ~/Z n in such a 

way that for some v ~ It n, the flow y is given by yt(w + Z ~) = (w + tv) + Z~. (This 

is condition (ii).) It follows that ay is just the directional derivative do. Hence an 

analysis of  condition (iii) comes down to looking at ordinary directional deriva- 

tives. Now condition (iii) asserts that dv be as nearly surjective as possible. Thus, 

verifying condition (iii) amounts to inverting the operator av, and the standard 
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approach to such problems is to use Fourier analysis. Let f be a function on 

R"/Z" with Fourier series expansion f(w),.~ Z,.a~,exp2ni(p,w), the sum being 

over p ~Z", and (/~, w) denoting the usual inner product of  w e R" with p. Then 

f ~  C| ") if, and only if, for every positive integer k, we have that 

(2.3.1) sup.(1 + (p,  #))k i a# [ 

is finite. Suppose now that f, 9 ~ C~(R"/Z") and b ~ R. Let ~ubuexp2rci@, w) be 

the Fourier series of g. In order for Oof + b = g to hold, we must have 

{2ni•uau(p, v) exp 2hi(p, w)} + b = ~.ubu exp 2hi(p, w), 

which is equivalent to 

{ 2ni(/~, v)a, = b, for /~ ~ 0 in 7', 

(2.3.2) b bo. 

Hence, condition (iii), as a condition on v, says that whenever {bu: p # 0EZ"} 

are the Fourier coefficients of a Coo function, then {b,/(2zi(p,v)): # ~ 0~Z"} 

are also the Fourier coefficients of a C oo function, in particular, the condition 

requires (p,  v) ~ 0 whenever p eZ" and # ~ 0. The only problem is that (/~, v) 

might be non-zero but very small (compared to (p ,# ) -k ) ,  so that division by 

(p, v) destroys the rapid decay needed (as in (2.3.1)) to get a Coo function. Note 

that this is no problem when n = 1, so condition (iii) is always satisfied when 

n = 1. For n > 2, the situation is more complicated: 

We shall say that v ~ R" (n >= 2) is poorly approximable if there exists a positive 

integer k such that 

inf.,ol/~ ] ~ I(P, v) I 

is strictly positive; otherwise we shall say that v is well approximable. 

THEog~  2.3. Let v~ R n. Then v is poorly approximable if, and only if, 

for every g ~ Coo(Rn/Z ~) one can find a constant b and a function f E C~176 '~) 

satisfying do f +  b = g. 

REMARK. This result is surely well known. 

PROOF OF THEOREM 2.3. It follows by comparing (2.3.1) and (2.3.2) that when 

v is poorly approximable, the equation aof + b = g can always be solved for f and 

b. Suppose, conversely, that v is well approximable. It may then happen that 

(p,  v) = 0 for some non-zero/~, and in that case, if we take g(w) = exp 2hi(p, w), 
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we cannot solve 0of + b = 9. Hence the only troublesome case is when v is well 

approximable, but (p, v) # 0 for all non-zero/t  EZ": 

Since v is well approximable, we can find for each positive integer k a non-zero 

PR ~Z" satisfying 

(2.3.3) (Pk, Pk)kl (Pk, V) ] < k -  1. 

Define 9 to be the function on Rk/Z k whose #th Fourier coefficient b u is given by 

{ b,~ = Gt~, v) for k = 1,2,-.. 

(2.3.4) bu = 0 if/~ is not one of the ]Ak'S. 

Combining (2.3.1) and (2.3.3), we see that 9 e C| �9 Also, 9 # 0, because 

(p ,v )  ~ 0 when p ~ 0. It is, on the other hand, clear from (2.3.1) and (2.3.2) that 

0vf+ b = 9 has no solution with feC~~ Q.E.D. 

It is not difficult to see that, apart from a set of measure zero in R ", every 

v ~ R", n > 2, satisfies inf,(#, p)"[ (p, v) ] > 0. Thus almost all of R" is poorly 

approximable. (See [1, w There are, however, a host of well approximable 

vectors. Consider the situation in RZ: 

Let W denote the set of all well approximable v ~ R 2 that also satisfy (p, v) ~ 0 

for all non-zero # eZ  z. Whether v = (vl, Vz) is in W depends only on how well 

the ratio vz/Vz is approximable by rational numbers. For example, if one sets 

v(1) = 10 and defines v(k), k > 2, inductively by v(k) = v(k - 1) !, and if T denotes 

]Ek~zl0 -'(s), then (1,~) ~ W. 

Now that we know W is not empty, it becomes necessary to check whether 

Theorem 2.2 remains true if we drop condition (iii). It does not. The next section 

gives a counterexample. 

3. An example 

Let N denote the Lie group whose underlying manifold is R 3 and whose group 

operation is given in terms of the coordinates in R 3 by (x, y, z) (t, u, v) = (x + t, 

y + u, z + v + xu). The subset F of N consisting of all points with integer coordi- 

nates is actually a subgroup of N, and N / F  is a compact manifold that will play 

the role of N. We shall take H = R, the action t ~ H on (x, y, z)F ~ N being given 

by t . ( x , y , z ) F = ( x , y , z + t ) F .  The quotient M = N / H  is T 2. Note that since 

dim(H) = 1, we have H ~' = ( X ~ T ( N ) :  IX, HI = 0}. Let Z be a non-zero 

element of H. 
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LEMMA 3.1. Let X ~H # satisfy: (1) X f  = 0 only if f is constant, and (2) the 

projection of X to a vector-field on M is t~for some v ~ R 2. I f  U and V belong to 

T(N), if 

Ix ,  ts] = v a . d  [X, V] = [tS, V] = O, 

and if for each x E N the vectors X(x), U(x), and V(x) are linearly independent, 

then V lies in H and U lies in H #. 

PROOF. There exist three functions Z,~/, and ( ~  C~ such that Z = zX 

+ ~/V + (U. It  follows that [X,Z] = (Xz)X + (Xr /+  ( ) V +  (XOU. On the other 

hand, X E H *  and thus [X,Z] = 0, whence X Z = X(  = ( +  X~/ = 0. Hence Z 

and ( are constants, and Xr/ = - ( implies that ( = 0 and ~/is constant. We have 

thus proved that Z is in the real linear span of X and V. Since IV, X]  = 0, it follows 

that [V, Z] = 0- - in  other words, V ~ H '~ . Applying Lemma 2.1, we see that, since 

V~H #, we can prove V~H simply by proving that p*V = O. 

We have already seen that Z = z X  + rlV for some constants Z and t/. Further- 

more t/ must be non-zero, by virtue of  condition (1) on X. Now p*Z = 0 and 

p*X = Or, which implies that p*V = - ()~/t/)O v. Thus what we need to prove is 

Z = 0 .  

Condition (1) on X implies that i f f e  C~(M) and Off = 0, then f is constant. 

Hence the flow on M whose derivative is av is the Kronecker flow, with all orbits 

dense. Let q : R x N ~ N denote the flow whose derivative is V. We are going to 

show that the orbits of  q are compact. Plainly this is consistent with p*V = 

- (Z/ t / )0~ only if Z = 0. Thus, proving q has compact orbits will prove the 

lemma. 

It is a result of  Palais [4, p. 73] that there is an action of N on N whose derivative 

is the real Lie algebra spanned by {X, U, V}. This action is clearly transitive and 

thus is merely another presentation of N as N / F .  The center of N acts on N with 

derivative V, which tells us that q is just the flow defined by the center of  N. This 

flow obviously has compact orbits. Q.E.D. 

LEMMA 3.2. Let X, U, and V remain as in Lemma 3.1. Then p*U = Ow for 

some  w E R 2. 

PROOF. Recall that p*X = a~. Choose w e R 2 so that {v, w} is a basis for R 2. 

Then there are functions a and fl in C~(M) such that p*U = ~ + flt3w. Note 

that if we can show that ~ = ~f l  = 0, then we will have shown that �9 and fl are 

constant (condition (1) on X, again), which proves the lemma. 
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We have just seen that p*V = 0. Since V = [X, U], it follows that 

0 = [p*X,p*UJ = [0v, a~3v + flc~w] = (0va)0~ + (~fl)0w. 

Hence a ~  = O~fl = 0, as desired. Q.E.D. 

We are now going to build a flow on N that is not N-induced, but that projects 

to an R2-induced flow on M. It is not hard to see that N is the only connected, 

simply connected nilpotent group of dimension 3 that operates transitively on N. 

Thus our flow, which will satisfy conditions (i) and (ii) of Theorem 2.2 by con- 

struction, is not L-induced for any nilpotent L that sits in an extension of  the form 

1 ~ H ~ L ~ R 2 ~ 1. (Note that H is one-dimensional in our present situation.) 

Let v e R 2 be well approximable, and assume also that <p, v> # 0 for all non- 

zero p e Z  2. Choose a poorly approximable w = ( w l , w 2 ) r  2 so that vlw2 

- v2wl = 1, where v = (vl, v2). By Theorem 2.3, we can find g e C~ 2) such 

that t~vf+ b = g has no solution with f z  C~~ 2) and b constant. On the other 

hand, we can f i n d f r  C~176 2) and a constant b so that c3~f+ b = g. We will use 

this bad g, good f ,  and good b to build the flow. 

Recall that N = N /F .  Let X* and Y* denote, respectively, the derivatives of  

the flows 

and 

(t, (x, y, z)F) ~ (x + t, y, z + ty)F 

(t, (x, y, z)F) ~ (x, y + t, z)F. 

Then [X*, Y*] is a non-zero element of H, which, without harm, we may assume 

is Z. 

Define X e  T(N) by X = v l X * +  v2Y*+ (fop)Z, where p, as always, is the 

natural projection N ~ M. The vector-field X is the derivative of  a flow q on N. 

By a standard argument (see [3: 54, statement 2.6]), the flow q has a dense orbit. 

Note also that IX, Z] = 0, and thus X E H 3. 

TI-IeOm~M 3.3. The flow q is not N-induced. 

PROOF. Suppose that the theorem is false. We can then find U and V in T(N) 

so that {X, U, V} satisfies the hypotheses of Lemma 3.1. Replacing U (if need be) 

by a real linear combination of  X and U, we can, by virtue of Lemma 3.2, arrange 

that p*U = 0w, where w is the element of R 2 used to define X. The vector field U 

will then have the form waX* + w2Y* + hZ for some C ~~ function h on N that is 

constant on H orbits. We also have, by Lemma 3.1, that V = cZ for some non-zero 

constant c. Hence 
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cZ = [ x ,  u ]  = (1 + ash - O j ) z .  

Since c~wf + b = g, it follows that  

(3.3.1) ~ h  + (b - c + 1) = g. 

However ,  (3.3.1) stands in fiat contradict ion to our  assumpt ion  that  O~h + constant 

= g has  no  C ~ s o l u t i o n  h. Q . E . D .  
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